
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

V-Fuzz: Vulnerability Prediction-Assisted
Evolutionary Fuzzing for Binary Programs

Yuwei Li , Shouling Ji , Member, IEEE, Chenyang Lyu, Yuan Chen , Jianhai Chen, Member, IEEE,

Qinchen Gu , Member, IEEE, Chunming Wu , and Raheem Beyah, Senior Member, IEEE

Abstract—Fuzzing is a technique of finding bugs by executing
a target program recurrently with a large number of abnormal
inputs. Most of the coverage-based fuzzers consider all parts
of a program equally and pay too much attention to how to
improve the code coverage. It is inefficient as the vulnerable
code only takes a tiny fraction of the entire code. In this article,
we design and implement an evolutionary fuzzing framework
called V-Fuzz, which aims to find bugs efficiently and quickly
in limited time for binary programs. V-Fuzz consists of two
main components: 1) a vulnerability prediction model and 2) a
vulnerability-oriented evolutionary fuzzer. Given a binary program
to V-Fuzz, the vulnerability prediction model will give a prior
estimation on which parts of a program are more likely to be
vulnerable. Then, the fuzzer leverages an evolutionary algorithm
to generate inputs which are more likely to arrive at the vulner-
able locations, guided by the vulnerability prediction result. The
experimental results demonstrate that V-Fuzz can find bugs effi-
ciently with the assistance of vulnerability prediction. Moreover,
V-Fuzz has discovered ten common vulnerabilities and exposures
(CVEs), and three of them are newly discovered.

Index Terms—Fuzz testing, graph embedding, vulnerability
prediction.

I. INTRODUCTION

FUZZING is an automated vulnerability discovery tech-
nique by feeding manipulated random or abnormal inputs

Manuscript received November 26, 2019; revised May 21, 2020; accepted
July 25, 2020. This work was supported in part by NSFC under
Grant U1936215, Grant U1836202, and Grant 61772466; in part by
the National Key Research and Development Program of China under
Grant 2018YFB0804102 and Grant 2020YFB1804705; in part by the Zhejiang
Provincial Natural Science Foundation for Distinguished Young Scholars
under Grant LR19F020003; in part by the Zhejiang Provincial Key Research
and Development Program under Grant 2019C01055 and Grant 2020C01021;
in part by the Industrial Internet Innovation and Development Project under
Grant TC190A449; and in part by the Major Scientific Project of Zhejiang
Lab under Grant 2018FD0ZX01. This article was recommended by Associate
Editor P. P. Angelov. (Yuwei Li and Shouling Ji are co-first authors.)
(Corresponding authors: Shouling Ji; Chunming Wu.)

Yuwei Li, Chenyang Lyu, Yuan Chen, Jianhai Chen, and Chunming Wu are
with the College of Computer Science and Technology, Zhejiang University,
Hangzhou 310027, China (e-mail: liyuwei@zju.edu.cn; puppet@zju.edu.cn;
chenyuan@zju.edu.cn; chenjh919@zju.edu.cn; wuchunming@zju.edu.cn).

Shouling Ji is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China, and also with the School
of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: sji@zju.edu.cn).

Qinchen Gu and Raheem Beyah are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: qgu7@gatech.edu; raheem.beyah@ece.gatech.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2020.3013675

to a target program [1]. With the rapid improvement of com-
puter performance, fuzzing has been widely used by industrial
software vendors, such as Google [2] and Microsoft [3] for
detecting bugs in software. However, the efficiency of fuzzing
is still badly in need of being improved, especially when
detecting bugs in relatively limited time.

How to improve the effectiveness of fuzzing is a popular
research field. One of the most important research directions
is coverage-based fuzzing which is focused on how to improve
the code coverage of the target application. The intuitions of
coverage-based fuzzers can be summarized as, if a fuzzer can
cover more paths/branches of the target program, it means the
program is tested more thoroughly and has a higher probability
of finding vulnerabilities. Nevertheless, it is not appropriate to
treat all components of the target program equally when aim-
ing at finding bugs efficiently in limited time. The reasons are
as follows. First, the vulnerable code usually takes a tiny frac-
tion of the entire code. For instance, Shin and Williams [4]
found that only 3% of the source code files in Mozilla Firefox
are vulnerable. Although a coverage-based fuzzer can improve
the coverage, most of the improved coverage may not be help-
ful in finding bugs. Second, there are still many difficulties in
achieving relatively high coverage. For most of the mutation-
based fuzzers, it is difficult for them to generate valid inputs
which can reach paths that are relatively complicated, for
example, a path contains magic bytes. For hybrid fuzzers [5],
which utilize symbolic execution to generate test cases that
can satisfy path constraints, they usually face the path explo-
sion problems when fuzzing the real-world programs. Third, in
practice, especially in industrial scenarios, the time for fuzzing
is usually limited. Therefore, it is crucial to seek a balance
between efficiently detecting bugs and exploring more paths.
When fuzzing time is limited, fuzzers should prioritize the sus-
piciously vulnerable components of the target program instead
of blindly persuing high coverage.

Based on the above motivation, we propose V-Fuzz, which
aims to find bugs quickly in limited time. In particular, V-Fuzz
is a binary-oriented fuzzing framework that can test a target
program without its source code. Note that binary-oriented
fuzzing is significant in practice, as the source code of a
program (e.g., commercial software) is not always available.
Nevertheless, most existing fuzzers [6]–[13] need the source
code and the binary-oriented fuzzers are few [14]–[16]. One
type of binary-oriented fuzzing is black-box fuzzing [14],
which does not need knowledge of the target program.
Nevertheless, it is usually inefficient. The other type is

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8878-510X
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0002-3945-2034
https://orcid.org/0000-0001-5678-5212
https://orcid.org/0000-0001-7958-9687

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

gray-box fuzzing [15], [16], which generally conducts analy-
sis on the transformed binaries (e.g., disassembled binaries) to
guide the fuzzing process and thus is more efficient. However,
most existing gray-box binary-oriented fuzzers [15], [16] are
coverage-based, which do not pay enough attention to the vul-
nerable code. To improve the efficiency in discovering bugs for
binary programs assisted by vulnerability prediction, V-Fuzz
leverages an evolutionary algorithm to generate inputs that
tend to arrive at the vulnerable code of a target program. It
needs to be emphasized that V-Fuzz is neither coverage-based
nor directed. V-Fuzz is different from most coverage-based
fuzzers which regard all codes equally since it pays more
attention to the code which has a higher probability to be vul-
nerable. From this perspective, V-Fuzz is designed more like a
“weighted coverage-based” fuzzer. In addition, unlike directed
fuzzers [10], [12], which generate inputs with the objective
of reaching a given set of target program locations, V-Fuzz
gives relatively small weights to other code which are unlikely
to be vulnerable. This is because the vulnerability prediction
model may not always be accurate and the components that
are predicted to be safe may still be vulnerable. Therefore,
V-Fuzz leverages the advantages of vulnerability prediction
and fuzzing, and meanwhile, reduces the disadvantages of
them.

In summary, our contributions are the following.
1) We propose V-Fuzz, a fuzzing framework that combines

vulnerability prediction with evolutionary fuzzing.
2) We design and implement a vulnerability prediction

model based on graph neural networks. The model is
able to predict the vulnerable probability (VP) of each
function of a target binary program.

3) To examine the performance of V-Fuzz, we con-
duct extensive evaluations leveraging ten popular Linux
applications and three programs of the popular fuzzing
benchmark LAVA-M [17]. The results demonstrate that
V-Fuzz is efficient in discovering bugs for binary pro-
grams. Moreover, we discovered ten common vulnera-
bilities and exposures (CVEs) by V-Fuzz, among which,
three were newly discovered. We reported the new
CVEs, and they have been confirmed and fixed.

II. V-FUZZ: SYSTEM OVERVIEW

In this section, we introduce the main components and
workflow of V-Fuzz. Fig. 1 shows the architecture of V-Fuzz,
which consists of two main components: 1) a neural network-
based vulnerability prediction model and 2) a vulnerability-
oriented evolutionary fuzzer.

Vulnerability Prediction Model: This component is to give
a prior static analysis on the target program to find which
components are more likely to be vulnerable. There are two
main approaches for vulnerability prediction. One is using
traditional static vulnerability detection methods. The other
is leveraging machine-learning or deep-learning techniques.
Among the two approaches, we choose to use deep learning
to build the vulnerability prediction model due to the following
reasons. First, most of the traditional static analysis methods

Fig. 1. Architecture of V-Fuzz.

use pattern-based approaches to detect vulnerabilities. The pat-
terns are manually defined by security experts. This procedure
is difficult, tedious, and time consuming. Although there
exist many static analysis tools, such as flawfinder [18] and
RATS [19], these tools are used to detect vulnerabilities on
source code. As in this article, we mainly focus on detecting
vulnerabilities of binary programs. Therefore, these tools are
not suitable for us. Second, deep learning has been success-
fully applied not only in the traditional fields, such as image
classification [20], object detection [21], natural language pro-
cessing [22], and recommendation system [23] but also in the
fields of software security [24]–[28]. In these applications,
deep learning has several advantages when compared with
pattern-based methods: 1) deep-learning methods do not need
experts to define the features or patterns, which can reduce
lots of overhead; 2) even for the same type of vulnerabilities,
it is hard to define an accurate pattern that can describe all
forms of it; and 3) pattern-based methods usually can only
detect one specific type of vulnerability while deep learning
methods have been proven to be able to detect several types
of vulnerabilities simultaneously [28]. Therefore, we choose
to leverage deep-learning methods to build our vulnerability
prediction model. Moreover, it is worth noting that there has
been no such approach that leverages deep learning to detect
or predict vulnerabilities for binary programs to the best of
our knowledge.

Specifically, we design the vulnerability prediction model
based on a graph embedding network. In this model, we regard
each function of a binary program as a graph and the model
will output the VP of it. The prediction results will be used to
assist a fuzzer in discovering bugs. The details of this model
are presented in Section III.

Vulnerability-Oriented Evolutionary Fuzzer: Based on the
previous vulnerability prediction result, the fuzzer will assign
more weight to the functions that have higher vulnerable prob-
abilities. The process is as follows: for each function of the
binary program with a VP, V-Fuzz will give each basic block
in the function of a static vulnerable score (SVS), which rep-
resents the importance of a basic block. The detailed scoring
method is described in Section IV. Then, V-Fuzz starts to
test the program with some initial inputs provided by users.
It implements an evolutionary algorithm to generate proper
inputs. For each executed input, V-Fuzz gives a fitness score
for it, which is the sum of the SVS of all basic blocks that
are on its execution path. Then, the inputs that have higher

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: V-FUZZ: VULNERABILITY PREDICTION-ASSISTED EVOLUTIONARY FUZZING FOR BINARY PROGRAMS 3

Fig. 2. Workflow of data preprocessing.

fitness scores or cause crashes will be selected as new seed
inputs. Afterward, new inputs will be continuously generated
by mutating the selected seed inputs. In this way, V-Fuzz
tends to generate inputs that are more likely to arrive at the
vulnerable regions.

III. VULNERABILITY PREDICTION

A. Problem Formalization

In this section, we formalize the vulnerability prediction
problem. We denote the vulnerability prediction model as M.
Given a binary program p̂, suppose it has τ functions F =
{f1, f2, . . . , fτ }. For any function fi ∈ F, it is an input of M,
and the corresponding output VPfi denotes the VP of fi, that is

VPfi = M(fi). (1)

In the following, we will explain the details of the model M
from three aspects: 1) the representation of input data; 2) the
model structure; and 3) how to train and use the model.

B. Data Preprocessing

As discussed in Section II, to build and train M, we should
seek a method to transform binary program functions into
numerical vectors. Moreover, the vectors should be able to
carry enough information for future training. Toward this, we
choose to use the attributed control flow graph (ACFG) [29]
to represent a binary function.

ACFG is a directed graph g = <V, E, φ>, where V is
the set of vertices, E is the set of edges, and φ is a map-
ping function. In ACFG, a vertex represents a basic block, an
edge represents the connection between two basic blocks, and
φ : V → ∑

maps a basic block in g to a set of attributes
∑

.
As we know, it is common to use control flow graph (CFG)

to find bugs [30], [31]. However, CFG is not a numerical vec-
tor, which means it cannot be used to train a deep learning
model directly. Fortunately, ACFG is another form of CFG by
describing CFG with a number of basic block-level attributes.
In ACFG, each basic block is represented by a numerical vec-
tor, where each dimension of the vector denotes the value of
a specific attribute. In this way, the entire binary function can
be represented as a set of vectors. Therefore, ACFG is suitable
for our requirements to represent a binary function.

Now, we show how to vectorize a binary program. Fig. 2
shows the workflow of data preprocessing. First, we disassem-
ble the binary program to obtain the CFGs of its functions.
Then, we extract attributes for basic blocks and transform
each basic block into a numerical vector. The attributes are
used to characterize a basic block, and they can be statistical,

TABLE I
USED ATTRIBUTES OF A BASIC BLOCK

semantic, and structural. Here, we only extract the statisti-
cal attributes for the following reasons. The first reason is
for efficiency. As indicated in [29], the cost of extracting
semantic features such as I/O pairs of basic blocks is too
expensive. Second, the graph embedding network can learn the
structural attributes automatically. We extract 255 attributes in
total. Table I shows some examples of all the 255 attributes,
and all the instruction type-related attributes can be found
in [32, Sec. 5.1]. There are mainly three kinds of attributes:
1) instruction-related attributes; 2) operand-related attributes;
and 3) string-related attributes. Then, each basic block can be
represented by a 255-D vector, and the binary program now
is represented by a set of 255-D vectors.

C. Model Structure

Based on the discussion in Section II, we choose to adapt
a graph embedding network [27], [33] as the core of our vul-
nerability prediction model. First, we give a brief introduction
to the graph embedding network. Then, we detail the design
of our model.

Graph embedding is an efficient approach to solve graph-
related problems [34], [35] such as node classification. It
transforms a graph into an embedding vector that contains
sufficient information of the graph for solving correspond-
ing problems. In our scenario, the embedding vectors of a
binary function should be able to contain sufficient features
for vulnerability prediction. In addition, graph embedding can
be considered as a mapping λ, which maps a function’s ACFG
g into a vector λ(g).

We use a neural network to approximate the mapping λ, and
train the model with vulnerable and secure binary functions
to enable the graph embedding network to learn the features
related to vulnerabilities. As the vulnerability prediction model
is required to output the VP of a binary function, we com-
bine the graph embedding network with a pooling layer and
a softmax layer. The pooling layer transforms the embedding
vector into a 2-D vector Z, and the softmax-layer maps the 2-D
vector Z of arbitrary real values into another 2-D vector Q,
where the value of each dimension is in the range [0, 1]. The
first dimension represents the VP, which is represented by p.
The second dimension represents the secure probability, and
naturally, the value is 1 − p. The entire model is trained by
labeled data end to end, and the parameters of the model can
be learned by minimizing a loss function.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

(a) (b)

Fig. 3. Structure of the vulnerability prediction model. Fig. 3(a) shows the overview of the graph embedding network. Fig. 3(b) shows the structure of the
neural network σ in one iteration t. For the ACFG of an example binary function in Fig. 3(a), in the first iteration, the embedding vector of the basic block
is calculated by the following equations: μ

(1)
1 = F(W1x1), μ

(1)
2 = F(W1x2 + σ((μ1)(0))), and μ

(1)
3 = F(W1x3 + σ((μ1)(0) + (μ2)(0))), which explains the

link relationship in this figure. (a) Overview of the graph embedding network. (b) Structure of the neural network σ .

TABLE II
NOTATIONS

Below is the formalization of the model. Table II shows
all the notations related to the model, and Fig. 3 presents the
structure of the model. The input of the model is the ACFG
g of a binary program function, g = <V, E, φ>. Each basic
block v ∈ V in ACFG has an attribute vector xv which can be
constructed according to all selected attributes. The number of
attributes for each basic block is a. Thus, xv is an a-D vector.
For each basic block v, the graph embedding network com-
putes an embedding vector μv, which combines the topology
information of the graph. The dimension of the embedding
vector μv is d. Let Nv be the set of neighboring vertices of
v. Since ACFG is a directed graph, Nv can be considered as
the set of precursor vertices of v. Then, the embedding vec-
tor μv can be computed by μv = F(xv,

∑
j∈Nv

(μj)), where
F is a nonlinear function that can be tanh, sigmoid, etc. The
embedding vector μv is computed for T iterations. For each
iteration t, the temp embedding vector can be obtain by equa-
tion μ

(t)
v = F(W1xv +σ(

∑
j∈Nv

(μj)
(t−1))), where xv is an a×1

vector and W1 is a d × a matrix. The initial embedding vec-
tor μ

(0)
v is set to zero. After T iterations, ∀v ∈ V , we obtain

the final graph embedding vector μ
(T)
v . As shown in Fig. 3(b),

σ is an n-layer fully connected neural network with param-
eters P = {P1, P2, . . . , Pn}. Each layer of σ has d neurons.
Let ReLU(·) = max{0, ·} be a rectified linear unit. We have
σ(x) = P1×ReLU(P2×· · · ReLU(Pnx)). After T iterations, we
can obtain the final graph embedding vector μ

(T)
v for each ver-

tex v ∈ V . Then, the graph embedding vector μg of the ACFG
g can be represented by the summation of the embedding
vector of each basic block, that is, μg = W2(

∑
v∈V(μ

(T)
v)),

where W2 is a d × d matrix. To compute the VP of the func-
tion, we map the graph embedding vector into a 2-D vector
Z = {z0, z1}, that is

Z = W3μg (2)

where W3 is a 2×d matrix. Then, we use a softmax function to
map the values of Z into the vector Q = {p, 1 − p}, p ∈ [0, 1],
that is

Q = Softmax(Z). (3)

The value of p is the output of the model, which represents
the VP of the binary program function g.

D. Train and Use the Model

In order to predict the VP, the model needs to be trained with
labeled data, where the label is either “vulnerable” or “secure.”
For the ACFG g of a function, the label l of g is 0 or 1, where
l = 1 means the function has at least one vulnerability, and
l = 0 means the function is secure.

The model’s training process is similar to a classifica-
tion model. Then, the parameters of M can be learned by

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: V-FUZZ: VULNERABILITY PREDICTION-ASSISTED EVOLUTIONARY FUZZING FOR BINARY PROGRAMS 5

Fig. 4. Overview of vulnerability-oriented fuzzing module of V-Fuzz.
DBI: dynamic binary instrumentation; SVS: static vulnerable score; and VP:
vulnerable probability.

optimizing the following equation:

min
W1,W2,W3,P1,P2,...,Pn

m∑

i=1

(H(Q, l)) (4)

where m is the number of training data and H is a cross-
entropy loss function. We optimize (4) with a stochastic
gradient descent (SGD) method. Although the model’s train-
ing process is similar to training a classification model, when
using the model, the classification result that whether a binary
function is vulnerable or not is too coarse grained and not
suitable for the subsequent fuzzing. Therefore, we choose to
use VP p as the output of the model.

IV. VULNERABILITY-ORIENTED FUZZING

Based on the result from the prediction model, the
vulnerability-oriented fuzzer will pay more attention to the
functions with higher vulnerable probabilities. Fig. 4 shows
the workflow of vulnerability-oriented fuzzing, where V-Fuzz
leverages an evolutionary algorithm to generate inputs that
tend to arrive at the vulnerable components. Specifically, for
a binary program, V-Fuzz uses the data preprocess module to
disassemble the binary to obtain the ACFG of each function,
which is the input of the vulnerability prediction model. Then,
the prediction model will give each binary program function
a VP. Based on the VP result, each basic block in the pro-
gram is given an SVS, which will be used later to evaluate
the executed test cases.

The fuzzing is a cyclic process. Like most mutation-based
evolutionary fuzzers, V-Fuzz maintains a seed pool, which is
used to save high-quality inputs as seeds. V-Fuzz starts to
execute the binary program with some initial inputs that are
provided by users. Meanwhile, it uses dynamic binary instru-
mentation (DBI) to track the execution information of the
program such as basic block coverage. Based on SVS and the
execution information, V-Fuzz will calculate a fitness score for
each executed testcase (i.e., inputs). The testcases with high
fitness scores are considered as high-quality inputs and will be
sent to the seed pool. In addition, the executed testcases which
trigger crashes will also be sent to the seed pool, regardless of
their fitness scores. The detailed method for calculating fitness

score is presented in Section IV-B. Next, V-Fuzz generates the
next-generation testcases by mutating the seeds in the seed
pool. In this way, V-Fuzz continues to execute the program
with newly generated inputs until the end conditions are met.
Below, we elaborate on the workflow of vulnerability-oriented
fuzzing.

A. Static Vulnerable Score

Based on the VP result, V-Fuzz gives each basic block an
SVS. For a function f , we assume its VP is pv, and it has ι

basic blocks f = b1, b2, . . . , bι. For bi ∈ f , bi’s SVS, denoted
by SVS(bi), can be calculated by the following equation:

SVS(bi) = κ ∗ pv + ω (5)

where κ and ω are constant parameters that should be obtained
from fuzzing experiments. Hence, the basic blocks that belong
to the same function have the same SVS values. For parameter
κ , we conduct the fuzzing experiments on 64 Linux programs
(e.g., some programs in binutils), and 20 of them have crashes.
Then, we test these 20 programs individually with the value
of κ ∈ [10, 100], and we observe that when κ ∈ [15, 25],
the fuzzer performs better on most of the target programs.
Therefore, we set κ = 20 as the default value. For parameter
ω, it is used to avoid SVS = 0 when functions have very low
vulnerable probabilities. As if SVS(bi) = 0, it represents that
bi has no meaning for fuzzing and becomes trivial, which is
against our design principle of V-Fuzz. Therefore, we set the
value of ω = 0.1, which is small and can make SVS > 0 all
the time.

Based on the approach of calculating SVS, V-Fuzz assigns
more weight to the basic blocks that are more likely to be
vulnerable, which will further assist the fuzzer in generating
inputs that are more likely to cover these basic blocks.

B. Seed Selection Strategy

Algorithm 1 shows the seed selection strategy of V-Fuzz.
Specifically, V-Fuzz leverages an evolutionary algorithm to
select seeds that are more likely to arrive at the vulnerable
components.

After giving every basic block an SVS, V-Fuzz enters the
fuzzing loop. During each loop, V-Fuzz monitors the program
to check if it has exceptions such as crashes. If the input causes
a crash, then the input is added to the seed pool. Once an
execution has completed, V-Fuzz records the execution path
for the input. The fitness score of the input is the sum of
the SVS values of the basic blocks that are on the execution
path. Fig. 5 shows an example for fitness score calculation.
We assume there are two inputs i1 and i2 in this generation.
The execution paths of the two inputs are path1 and path2,
respectively. Suppose path1 is b1 → b2 → b4, and path2 is
b1 → b3 → b6 → b8. The fitness score of inputs i1 and i2
are f1 and f2, respectively. Then, f1 = 2 + 5 + 8 = 15 and
f2 = 2 + 1 + 1 + 2 = 6. As f1 is larger than f2, the input
i1 will be selected as a seed. It should be noted that in our
implementation, if any input causes a crash, no matter how
low the fitness score it has, it will be sent to the seed pool.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 Seed Selection Algorithm
Require: Binary Program: p; The set of all basic blocks of p: B; The set of

initial inputs: I; The set of seed pool: S; The set of testcases: T;
T = I
while In the fuzzing loop do

for t in T do
Path, Ret = EXE(p, t)
fitness(t) = ∑

b∈Path(SVS(b))

if Ret(t) ∈ CRASH then
S.add(t)

end if
end for
Q = SelectKfitness(T)

S.add(Q)

T = Mutate(S)

end while

Fig. 5. Example for fitness score calculation.

In this way, V-Fuzz not only utilizes the information of the
vulnerability prediction model but also considers the actual sit-
uation. Therefore, V-Fuzz can mitigate the potential weakness
of the vulnerability prediction model.

C. Mutation Strategy

V-Fuzz is a mutation-based evolutionary fuzzing system,
which generates new inputs by mutating the seeds. Like
most of the mutation-based fuzzers, the mutation operations
are byte flips, inserting “interesting” bytes, changing some
bytes, selecting some bytes from several seeds, splicing them
together, and so on.

The design of the mutation strategy is very important, as an
appropriate strategy can help the fuzzer generate good inputs
which can find new paths or crashes. For example, Fig. 6
gives the CFG of a simple program. Assume that there is a
seed string s1 = “abx,” which can cover the basic blocks b1
and b2. Another seed string s2 = “qwerty” covers the basic
blocks b1 and b3 . It is obvious that the new inputs mutated
from s1 are more likely to cover other new basic blocks than
those mutated from s2.

It is worth noting that if we want to obtain “ab*” by mutat-
ing “abx,” the mutation must be slight, which only changes a
small part of the original seed. However, if the fuzzer has spent
too much time doing the slight mutation operations, while
making no progress, the fuzzer should change its mutation
strategy and pay more attention to other paths. In this example,
if the fuzzer obtains “stuck” for a long time by performing the

Fig. 6. Simple CFG.

slight mutation on “abx,” it would be better to choose heavy
mutation that changes more about the original seed, which may
help the fuzzer find the basic block b3. Therefore, the fuzzer
should dynamically adjust its mutation strategy according to
the actual fuzzing states.

We classify the mutation strategies into slight mutation and
heavy mutation. In order to help the fuzzer determine the
selection of the mutation strategy, we define the crash win-
dow (CW), which is a threshold to determine the selection of
mutation strategy. Consequently, we assume that the number
of generations whose inputs have not found any new path or
crash is denoted by ζ . If ζ > CW, the fuzzer should select
a heavy mutation strategy. Furthermore, we propose the CW
jump algorithm to adjust the value of CW optimally.

The main idea of the CW jump algorithm is as follows. First,
we assume that the initial value of CW is ini_cw, its maxi-
mum value is max_cw, and its minimum value is min_cw.
The value of CW starts from ini_cw, and the fuzzer selects
slight mutation as its initial mutation strategy. During the
fuzzing process, if ζ > CW, the fuzzer will change its muta-
tion strategy to heavy mutation, and will double the value of
CW. Once an input finds a new path or a crash, then we set
ζ = 0 and the new value of CW as twice of its former value.
Algorithm 2 shows the pseudocode of the CW jump algorithm.
In our implementation, we set ini_cw as 4, max_cw as 16,
and min_cw as 2. Note that these parameters can be changed
according to different target programs.

V. IMPLEMENTATION AND SETTINGS

A. Vulnerability Prediction

The vulnerability prediction module consists of two main
components: 1) the ACFG extractor and 2) the vulnerability
prediction model. For the ACFG extractor, we implement it by
writing a plug-in on the famous disassembly tool IDA Pro [36].
For the vulnerability prediction model, we implement it based
on PyTorch [37], which is a popular deep learning framework.
We train the vulnerability prediction model on a server which
is equipped with two Intel Xeon E5-2640v4 CPUs (40 cores
in total) running at 2.40 GHz, 4 TB HDD, 64-GB memory,
and one GeForce GTX 1080 TI GPU card.

B. Vulnerability-Oriented Fuzzing

For vulnerability-oriented fuzzing, we implement the fuzzer
based on VUzzer [15], a state-of-the-art binary-oriented evo-
lutionary fuzzer. We conduct each fuzzing experiment on a
virtual machine with Ubuntu 14.04 LTS. The virtual machine

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: V-FUZZ: VULNERABILITY PREDICTION-ASSISTED EVOLUTIONARY FUZZING FOR BINARY PROGRAMS 7

Algorithm 2 CW Jump Algorithm
Require: Binary Program: p; The initial crash window: ini_cw; Max Crash

Window: max_cw; Min Crash Window: min_cw; The current Crash
Window: CW; The set of seed pool: S; The set of testcases: T; The mutation
strategy: MS; no_crash = True; no_new_bb = True;
CW = ini_cw
T = I
ζ = 0
MS = slight_mutate
while In the fuzzing loop do

for t in T do
EXE(p, t)
if find crash then

no_crash = False
end if
if find new basic block then

no_new_bb = False
end if

end for
if no_crash == True&&no_new_bb == True then

ζ + +
if ζ > CW then

MS = heavy_mutate
if CW >= min_cw × 2 then

CW = CW/2
end if

end if
else

ζ = 0
MS = slight_mutate
if CW <= max_cw/2 then

CW = CW × 2
end if

end if
S = select_good_seed(T)

T = MS(S)

end while

is configured with 32-b single-core 4.2-GHz Intel CPU and
4-GB RAM.

VI. EVALUATION

In this section, we evaluate the performance of V-Fuzz.
Since V-Fuzz consists of two components, we will present the
evaluation results in two parts: 1) the vulnerability prediction
and 2) the vulnerability-oriented fuzzing.

A. Vulnerability Prediction Evaluation

1) Data Selection: We use two datasets for training and
testing the vulnerability prediction model. The first dataset is
from Juliet Test Suite v1.3 [38], which is published by the
National Institute of Standards and Technology (NIST). We
use this dataset as it has been widely used in many vulner-
ability related work [39], [28]. This dataset is a collection
of C/C++ language programs and each function is labeled
with “good” or “bad.” The “good” or “bad” represents “vul-
nerable” or “secure,” respectively. Each “bad” example has
a common weakness enumeration identifier (CWE ID). Juliet
Test Suite v1.3 has examples of 118 different CWEs in total.
As fuzzing is suitable for discovering bugs related to memory,
we select some CWE samples which are related to memory
errors from Juliet Test Suite v1.3, which are shown in Table III.
The second dataset is from some real-world programs such
as mpg123, which contains some CVEs. For the real-world

TABLE III
CWE TYPES OF JULIET TEST SUITE DATASET

TABLE IV
DATASETS

program dataset, we label it manually according to its corre-
sponding CVE information. As our model is trained and tested
with binary programs, we implement the labeling process by
writing an IDA Pro plugin in Python. Table IV presents the
information of the two datasets for training and testing the
model.

2) Pre-Experiments: First, we conduct some pretraining
experiments to determine the default parameters of the model.
We use dataset of Juliet Test Suite to conduct the pretraining
experiments. We use the Adam optimization algorithm [40]
and set the learning rate equal to 0.0001. Based on the results
of the pretraining experiments, we set the depth of the network
as 5, the embedding size as 256, and the number of iterations
as 3. We take the above setting as the default of our model. It
needs to be emphasized that the parameters of the model may
have to be adjusted according to different application scenarios
and datasets.

3) Evaluation Metrics: We evaluate the performance of the
vulnerability prediction model from the following metrics: top-
K accuracy, loss, ACFG extraction time, and training time.

Top-K Accuracy: As our model is not a binary classifica-
tion model, we cannot calculate accuracy in a traditional way.
Therefore, we define top-K accuracy to evaluate the accuracy
of the model. Suppose the number of testing samples is L̂.
For all testing samples, we sort their vulnerable probabilities
in descending order and we select the top-K testing samples.
Assuming among the top-K samples, the number of samples
labeled as “vulnerable” is v̂. The top-K accuracy equals to
v̂/K. Figs. 7(a) and 8(a) present top-k accuracy when setting
the threshold K to different values (in range [200, 1000]) for
the Juliet Test Suite dataset and the real-world program dataset,
from which we can observe that the accuracy of the model is
high (greater than 80%).

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 7. Performance of the model on Juliet Test Suite dataset. (a) Top-K
accuracy. (b) Loss.

Fig. 8. Performance of the model on the real-world program dataset.
(a) Top-K accuracy. (b) Loss.

Loss: We calculate loss of the model with cross-entropy
loss function. Fig. 7(b) and 8(b) present loss curves for the
two datasets. We can observe that loss drops to a low value
soon and becomes stable, which means the model converges
quickly. For the Juliet Test Suite dataset, the model can con-
verge within ten epochs. For the real-world program dataset,
the model can converge within 20 epochs.

ACFG Extraction Time: In order to test the time spent on
extracting ACFG, we collect a lot of binary programs and test
the extraction time of them. Fig. 9 shows the ACFG extrac-
tion time with different number of functions and file sizes.
Moreover, we test the debugging binaries and the released
binaries, respectively. From these figures, we have the follow-
ing observations: 1) the extraction time has a positive linear
correlation with the number of functions and file size and
2) the extraction time is pretty short. For most of the debug-
ging binaries, the extraction time is within 2.5 s. For most of
the released binaries, the extraction time is within 100 s. Thus,
we can extract the ACFG of a binary program efficiently.

Training Time: Fig. 10 shows the training time with different
parameters. For this model, the parameters which affect the
training time more are depth and embedding size. From this
figure, we can observe that the training time has a positive
correlation with both the depth and the embedding size. As
the model can converge within 20 epochs, we only need about
200 min to train a valid vulnerability prediction model, which
is significantly efficient. In addition, as the model is trained
offline, it does not affect the time overhead of fuzzing.

From the above results, we can see that this model is capable
of vulnerable function prediction.

Fig. 9. ACFG extraction time.

Fig. 10. Training time with different model parameters: depth n and
embedding size d.

B. Evaluation of Fuzzing

In this section, we evaluate the performance of V-Fuzz
in fuzzing. Toward this, we conduct a number of fuzzing
experiments on 13 different applications as shown in Table V.
The reasons for selecting these applications are as fol-
lows. First, these applications are widely used for eval-
uating the performance of fuzzers [7], [8], [15]. Second,
these applications have various types, such as the audio
processing software (e.g., MP3Gain), pdf transformation
tools (e.g., pdftotext), and XPS document library (e.g.,
libgxps). We compare V-Fuzz with several prominent
fuzzers: VUzzer [15], AFL [6], and AFLFast [11]. VUzzer
is a state-of-the-art binary-oriented fuzzer. AFL and AFLFast
are popular gray-box fuzzers that need the source code of a
target program.1 It should be emphasized that all of the fuzzing
experiments are conducted based on the following principles:
1) all the running environments are the same, the details are in
Section V-B; 2) all the initial inputs for fuzzing are the same;
and 3) the running time of all the fuzzing evaluations is the

1Although AFL /AFLFast can be combined with QEMU to support fuzzing
binary programs, the common usage of AFL/AFLFast utilizes the compile-
time instrumentation which needs the source code of a target program. In our
evaluation, we followed the common usage of AFL/AFLFast.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: V-FUZZ: VULNERABILITY PREDICTION-ASSISTED EVOLUTIONARY FUZZING FOR BINARY PROGRAMS 9

TABLE V
NUMBER OF UNIQUE CRASHES FOUND IN 24 HOURS

same (24 h). Therefore, all of the fuzzing experiments are fair
and convincing.

There are two main aspects to evaluate a fuzzer’s capability
of finding bugs: 1) unique crashes and 2) identified vulnera-
bilities. We will demonstrate the performance of V-Fuzz from
the two aspects.

1) Unique Crashes: The capability of finding unique
crashes is an important factor to evaluate a fuzzer’s
performance. Although a unique crash is not necessarily a
vulnerability, in most cases, if a fuzzer can find more crashes,
it can find more vulnerabilities. Thus, we will demonstrate
V-Fuzz’s performance in finding unique crashes by answering
the following question.

Whether V-Fuzz Can Find More Unique Crashes in Limited
Time? In detail, Table V presents the information of the target
programs and the number of unique crashes found in 24 h.
From Table V, we have the following observations: 1) for all
the 13 programs, V-Fuzz finds the most unique crashes (the
average number of unique crashes for one program is 1114)
and is much better than the other three fuzzers; 2) compared
with VUzzer, the average number of unique crashes found
by V-Fuzz is improved by 35.8%. In addition, for the pro-
gram cflow, VUzzer does not find any crash while V-Fuzz
finds one crash; 3) compared with AFL, there are five pro-
grams (uniq, base64, who, pdf2svg, and cflow), on
which AFL has not found any crash while V-Fuzz had a
good performance; and 4) compared with AFLFast, there are
also five programs (uniq, base64, who, pdffonts, and
cflow), on which AFLFast does not find any crash while
V-Fuzz does find.

Moreover, in order to reduce the impact of randomness, we
conduct fuzzing experiments for multiple runs (three times)
on two programs (tiff2pdf and tiffsplit). The results
are presented in Fig. 11. From these figures, we can observe
that V-Fuzz outperforms VUzzer in the three times runs. For
the program tiff2pdf, V-Fuzz finds 10, 4, and 2 unique
crashes in three times runs while VUzzer finds 6, 1, and 1
unique crashes. For the program tiffsplit, V-Fuzz finds
at least six unique crashes in three times runs while VUzzer

Fig. 11. Number of unique crashes for multiple runs.

TABLE VI
NUMBER OF BUGS FOUND ON LAVA-M

finds no more than two unique crashes on fuzzing program
tiffsplit within 24 h.

2) Vulnerability Discovery: In this part, we show V-Fuzz’s
capability of discovering vulnerabilities. During the fuzzing
process of V-Fuzz, we collect the inputs which cause crashes.
For the three programs of LAVA-M, we run the programs again
with the crash inputs and verify the bugs they found. Table VI
shows the number of bugs found by V-Fuzz and VUzzer. Each
injected bug in LAVA-M has a unique ID, and the correspond-
ing ID is printed when the bug is triggered. There are two
kinds of bugs in LAVA-M: 1) listed and 2) unlisted. The listed
bugs are those that the LAVA-M authors were able to trigger
when creating the LAVA-M programs, and the unlisted bugs
are those that the LAVA-M authors were not able to trigger.
From Table VI, we can observe that V-Fuzz can trigger more
bugs than VUzzer. In addition, V-Fuzz is able to trigger several
unlisted bugs and exhibits a better performance than VUzzer
in this case too.

For the real-world Linux applications, in order to verify
the vulnerabilities found by V-Fuzz, we recompile the tar-
get programs with AddressSanitizer [42], which is a memory
error detector for C/C++ programs. Then, we execute these
programs with the collected crash inputs. AddressSanitizer
can give detailed information of the vulnerabilities. Based on
the information from AddressSanitizer, we search the related
information on the official CVE website [43] and validate the
vulnerabilities we find. Table VII shows the detailed CVE
information that we find. We have found ten CVEs in total,
which three of them (CVE-2018-10767, CVE-2018-10733,
and CVE-2018-10768) are newly found by us. Moreover,
most of the tested applications are shown to have CVEs.
The crash inputs which are found when fuzzing the pro-
grams of xpdf-2.0 can also trigger the vulnerability of
xpdf-3.01. Finally, most of the CVEs are buffer-related
errors, which is reasonable as fuzzing is good at finding this
type of vulnerabilities.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE VII
CVES FOUND BY V-FUZZ

TABLE VIII
TOP-3 VULNERABLE PROBABILITIES

VII. FURTHER ANALYSIS

Assistance of Vulnerability Prediction: Here, we give a
case study to show whether vulnerability prediction can help
improve fuzzing performance. We demonstrate the effective-
ness of vulnerability prediction by answering the following
two questions: 1) does the binary functions with known CVEs
receive higher VP? and 2) can V-Fuzz generate inputs that
can trigger the corresponding CVE? To answer these ques-
tions, we conduct a case study on the software mpg321.
As for the CVE-2017-11552, the “vulnerable” function is
mad_decoder_run of the file “mpg321.c”. For this func-
tion, our model gives it a VP of 0.78, which is the third
highest VP presented in Table VIII. In addition, as we show
in Table VII, V-Fuzz successfully generates testcases that can
trigger this vulnerability. Therefore, the functions with CVEs
actually receive higher vulnerability scores and V-Fuzz can
successfully generate inputs that can trigger the CVE.

VIII. MORE RELATED WORK AND DISCUSSION

More Related Work: In addition to the related work dis-
cussed before, we give more related work in this section.
In order to reduce the blindness of fuzzing and improve its
efficiency, there are many related works that utilize various
techniques to assist fuzzing. One is using symbolic execu-
tion to assist fuzzing. Driller [5] combines AFL with concolic
execution to generate inputs that can trigger deeper bugs.
TaintScope [44] is a fuzzing system that uses dynamic taint
analysis and symbolic execution to test ×86 binary programs.
However, as symbolic execution still has several problems
such as path explosion, it may not perform well on fuzzing
the large real-world programs. Second is using program anal-
ysis to assist fuzzing. Dowser [45] is a guided fuzzer that
combines taint tracking, program analysis, and symbolic exe-
cution to detect buffer overflow and underflow vulnerabilities.
Compared with Dowser, V-Fuzz is designed to find more
types of vulnerabilities. VUzzer [15] utilizes control-flow and
data-flow analysis to detect bugs that lie in deeper paths.

VUzzer assigns more weights to deeper code components.
Different from VUzzer, V-Fuzz assigns more weights to code
components that are more likely to be vulnerable.

Limitations of V-Fuzz and Future Work: Here, we give a
discussion on the limitations of V-Fuzz and what we can do
to improve it in our future work. V-Fuzz is a fuzzing frame-
work that combines fuzzing with vulnerability prediction. For
vulnerability prediction, we design and implement a model
based on a graph embedding network. The model has the
following limitations. First, the model is only trained with lim-
ited data in this article. Additionally, we believe the model’s
performance can be improved when we train it with more
high-quality industrial datasets. Second, the model focuses
on predicting the VP for binary and the prediction granular-
ity is a function. It is interesting to develop further models
that are applicable for other application scenarios, such as for
source code and other finer granularity (basic block or lines
of code). Third, since V-Fuzz provides a feasible framework
for assisting fuzzers with vulnerability prediction, in the future,
V-Fuzz can be extended to incorporate with more vulnerability
prediction models/tools and other fuzzers.

IX. CONCLUSION

In this article, we designed and implemented V-Fuzz,
a vulnerability-oriented evolutionary fuzzing framework for
binary programs. By combining the vulnerability prediction
with evolutionary fuzzing, V-Fuzz can generate inputs that
tend to arrive at the potential vulnerable regions. We eval-
uated V-Fuzz on popular benchmark programs (e.g., uniq)
of LAVA-M [17], and a variety of the real-world Linux
applications, including the audio processing software (e.g.,
MP3Gain), pdf transformation tools (e.g., pdftotext), and
xps documents library (e.g., libgxps). Compared with three
prominent fuzzers, the experimental results demonstrate that
V-Fuzz can find more vulnerabilities quickly. In addition,
V-Fuzz has discovered ten CVEs, and three of them are newly
discovered. In the future, we will study to take advantage of
more advanced program analysis techniques to assist fuzzers
in discovering vulnerabilities.

REFERENCES

[1] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Upper Saddle River, NJ, USA: Addison-Wesley Professional,
2007.

[2] Google. (2018). OSS-Fuzz—Continuous Fuzzing for Open Source
Software. [Online]. Available: https://github.com/google/oss-fuzz

[3] Microsoft. (2018). Microsoft Security Development Lifecycle.
[Online]. Available: https://www.microsoft.com/en-us/sdl/process
/verification.aspx

[4] Y. Shin and L. Williams, “Can traditional fault prediction models be
used for vulnerability prediction?” Empirical Softw. Eng., vol. 18, no. 1,
pp. 25–59, 2013.

[5] N. Stephens et al., “Driller: Augmenting fuzzing through selective
symbolic execution,” in Proc. NDSS, vol. 16, 2016, pp. 1–16.

[6] M. Zalewski. (2017). American Fuzzy Lop. [Online]. Available:
http://lcamtuf.coredump.cx/afl/

[7] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proc. 39th IEEE Symp. Security Privacy, 2018, pp. 1–15.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: V-FUZZ: VULNERABILITY PREDICTION-ASSISTED EVOLUTIONARY FUZZING FOR BINARY PROGRAMS 11

[8] S. Gan et al., “Collafl: Path sensitive fuzzing,” in Proc. 39th IEEE Symp.
Security Privacy, 2018, pp. 679–696.

[9] C. Lyu et al., “MOPT: Optimized mutation scheduling for fuzzers,” in
Proc. USENIX Security Symp., 2019, pp. 1949–1966.

[10] H. Chen et al., “Hawkeye: Towards a desired directed grey-box
fuzzer,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2018,
pp. 2095–2108.

[11] V. Pham and A. Roychoudhury, “Coverage-based greybox fuzzing
as Markov chain,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2016, pp. 1032–1043.

[12] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2017, pp. 2329–2344.

[13] P. Hui, S. Yan, and P. Mathias, “T-fuzz: fuzzing by program transforma-
tion,” in Proc. 39th IEEE Symp. Security Privacy, 2018, pp. 697–710.

[14] K. Böttinger, “Guiding a colony of black-box fuzzers with chemotaxis,”
in Proc. IEEE Security Privacy Workshops (SPW), 2017, pp. 11–16.

[15] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Proc. Netw.
Distrib. Syst. Security Symp., 2017, pp. 1–12.

[16] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proc. 2017 11th Joint
Meeting Found. Softw. Eng., 2017, pp. 627–637.

[17] B. Dolangavitt et al., “Lava: Large-scale automated vulnerability addi-
tion,” in Proc. 37th IEEE Symp. Security Privacy, 2016, pp. 110–121.

[18] (2004). Flawfinder. [Online]. Available: https://dwheeler.com/flawfinder/
[19] (2004). Rats: A Rough Auditing Tool for Security. [Online]. Available:

https://code.google.com/archive/p/rough-auditing-tool-for-security/
[20] Y. Zhou and Y. Wei, “Learning hierarchical spectral-spatial features for

hyperspectral image classification,” IEEE Trans. Cybern., vol. 46, no. 7,
pp. 1667–1678, Jul. 2016.

[21] B. Xue and N. Tong, “DIOD: Fast and efficient weakly semi-supervised
deep complex isar object detection,” IEEE Trans. Cybern., vol. 49,
no. 11, pp. 3991–4003, Nov. 2019.

[22] J. Du, C. Vong, and C. L. P. Chen, “Novel efficient rnn and lstm-
like architectures: Recurrent and gated broad learning systems and their
applications for text classification,” IEEE Trans. Cybern., early access,
Feb. 20, 2020, doi: 10.1109/TCYB.2020.2969705.

[23] M. Fu, H. Qu, Z. Yi, L. Lu, and Y. Liu, “A novel deep learning-based
collaborative filtering model for recommendation system,” IEEE Trans.
Cybern., vol. 49, no. 3, pp. 1084–1096, Mar. 2019.

[24] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-
in-time defect prediction,” in Proc. IEEE Int. Conf. Softw. Qual. Rel.
Security, 2015, pp. 17–26.

[25] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in Proc. 24th USENIX Security Symp.,
2015, pp. 611–626.

[26] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proc. 12th Working
Conf. Min. Softw. Repositories, 2015, pp. 334–345.

[27] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similar-
ity detection,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2017, pp. 363–376.

[28] Z. Li et al., “Vuldeepecker: A deep learning-based system for vulner-
ability detection,” in Proc. Netw. Distrib. Syst. Security Symp., 2018,
pp. 1–15.

[29] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2016, pp. 480–491.

[30] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “Discovre: Efficient
cross-architecture identification of bugs in binary code,” in Proc. NDSS,
2016, pp. 381–396.

[31] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proc. IEEE Symp.
Security Privacy, 2015, pp. 709–724.

[32] Intel. (2019). Intel 64 and IA-32 Architectures Software Developer
Manuals. [Online]. Available: https://software.intel.com/en-us/articles
/intel-sdm

[33] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent vari-
able models for structured data,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2702–2711.

[34] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[35] X. Shen and F. Chung, “Deep network embedding for graph representa-
tion learning in signed networks,” IEEE Trans. Cybern., vol. 50, no. 4,
pp. 1556–1568, Apr. 2020.

[36] Hex-Rays. The IDA Pro Disassembler and Debugger. Accessed: 2018.
[Online]. Available: https://www.hex-rays.com/products/ida/

[37] PyTorch. Pytorch: Tensors and Ynamic Neural Networks in Python With
Strong GPU Acceleration. [Online]. Available: http://pytorch.org/

[38] (2017). Juliet Test Suite for C/C++. [Online]. Available:
https://samate.nist.gov/SRD/testsuite.php

[39] W. Han, B. Joe, B. Lee, C. Song, and I. Shin, “Enhancing memory error
detection for large-scale applications and fuzz testing,” in Proc. Netw.
Distrib. Syst. Security Symp. (NDSS), 2018, pp. 1–47.

[40] D. P. Kingma and J. Ba. (2014). Adam: A Method for Stochastic
Optimization. [Online]. Available: https://arxiv.org/abs/1412.6980

[41] L. Van Der Maaten, “Accelerating T-SNE using tree-based algorithms,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 3221–3245, 2014.

[42] chefmax. (2017). Addresssanitizer. [Online]. Available: https:
//github.com/google/sanitizers/wiki/AddressSanitizer

[43] NVD. (2018). CVE: Common Vulnerabilities and Exposures. [Online].
Available: https://cve.mitre.org/

[44] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Proc. 31st IEEE Symp. Security Privacy, 2010, pp. 497–512.

[45] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
Proc. USENIX Conf. Security Symp., 2013, pp. 49–64.

Yuwei Li received the B.E. degree from the Nanjing
University of Posts and Telecommunications,
Nanjing, China, in 2016. She is currently pursuing
the Ph.D. degree with the Computer Science
and Technology College, Zhejiang University,
Hangzhou, China.

Her current research interests include software
security, system security, and AI security.

Shouling Ji (Member, IEEE) received the first Ph.D.
degree in electrical and computer engineering from
the Georgia Institute of Technology, Atlanta, GA,
USA, in 2015, and the second Ph.D. degree in com-
puter science from Georgia State University, Atlanta,
in 2013.

He is currently a ZJU 100-Young Professor with
the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China, and a
Research Faculty with the School of Electrical
and Computer Engineering, Georgia Institute of

Technology. His current research interests include AI security, data-driven
security, privacy, and data analytics.

Dr. Ji was the Membership Chair of the IEEE Student Branch at Georgia
State from 2012 to 2013. He is a member of ACM.

Chenyang Lyu received the B.E. degree in com-
puter science and technology from the Huazhong
University of Science and Technology, Wuhan,
China, in 2017. He is currently pursuing the Ph.D.
degree with the Computer Science and Technology
College, Zhejiang University, Hangzhou, China.

His current research interests include deep learn-
ing and fuzz testing.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCYB.2020.2969705

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Yuan Chen received the B.S. degree in biology from
Zhejiang University, Hangzhou, China, in 2018,
where he is currently pursuing the Ph.D. degree with
the Computer Science and Technology College.

His current research interests include Web and
software security.

Jianhai Chen (Member, IEEE) received the
M.S. and Ph.D. degrees in computer science
and technology from Zhejiang University (ZJU),
Hangzhou, China, in 2006 and 2016, respectively.

He is currently an Associate Professor with the
College of Computer Science and Technology,
ZJU, where he is also the Director of ZJU
SuperComputing Team, and the Director of ZJU
Intelligent Computing Innovation and Entre-
Preneurship Laboratory. His research interests
include blockchain system security, cloud comput-

ing scheduling algorithms and game theory, supercomputing application
optimization, and AI data mining.

Dr. Chen is a member of the CCF and ACM.

Qinchen Gu (Member, IEEE) received the M.S.
degree in electrical and computer engineering from
the Georgia Institute of Technology (Georgia Tech),
Atlanta, GA, USA, in 2015, where he is cur-
rently pursuing the Ph.D. degree with the School
of Electrical and Computer Engineering.

He is also a Graduate Research Assistant with
the Communications Assurance and Performance
Group, Georgia Tech. His research primarily focuses
on the security for cyber–physical systems.

Chunming Wu received the Ph.D. degree in com-
puter science from Zhejiang University, Hangzhou,
China, in 1995.

He is currently a Professor with the College
of Computer Science and Technology, Zhejiang
University. His research interests include software-
defined networks, proactive network defense,
network virtualization, and intelligent networks.

Raheem Beyah (Senior Member, IEEE) received
the Bachelor of Science degree in electrical
engineering from North Carolina A&T State
University, Greensboro, NC, USA, in 1998, and
the masters’s and Ph.D. degrees in electrical and
computer engineering from Georgia Tech, Atlanta,
GA, USA, in 1999 and 2003, respectively.

He was an Assistant Professor with the
Department of Computer Science, Georgia State
University, Atlanta, a Research Faculty Member
with the Communications Systems Center (CSC),

Georgia Tech, and a Consultant with Andersen Consulting’s (currently,
Accenture) Network Solutions Group. He is the Motorola Foundation
Professor and the Associate Chair with the School of Electrical and
Computer Engineering, Georgia Tech, where he leads the Communications
Assurance and Performance Group and is a member of CSC. His research
interests include network security, wireless networks, network traffic
characterization and performance, and critical infrastructure security.

Dr. Beyah received the National Science Foundation CAREER Award in
2009 and was selected for DARPA’s Computer Science Study Panel in 2010.
He is a member of AAAS and ASEE, is a Lifetime Member of NSBE, and
is a Senior Member of ACM.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2020 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.

